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ABSTRACT

A parametric statistical post-processing method is presented that transforms

raw (and frequently biased) ensemble forecasts from the Global Ensemble

Forecast System (GEFS) into reliable predictive probability distributions for

precipitation accumulations. Exploratory analysis based on 12 years of refore-

cast data and 1/8-degree climatology-calibrated precipitation analyses shows

that censored, shifted gamma distributions can well approximate the condi-

tional distribution of observed precipitation accumulations given the ensem-

ble forecasts. A nonhomogeneous regression model is set up to link the pa-

rameters of this distribution to ensemble statistics that summarize the mean

and spread of predicted precipitation amounts within a certain neighborhood

of the location of interest, and in addition the predicted mean of precipitable

water. The proposed method is demonstrated with precipitation reforecasts

over the conterminous United States using common metrics such as Brier

skill scores and reliability diagrams. It yields probabilistic forecasts that are

reliable, highly skillful, and sharper than the previously demonstrated analog

procedure. In situations with limited predictability, increasing the size of the

neighborhood within which ensemble forecasts are considered as predictor

can further improve forecast skill. It is found, however, that even a parametric

post-processing approach crucially relies on the availability of a sufficiently

large training dataset.
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1. Introduction32

Ensemble predictions are now routinely generated at operational weather prediction centers33

worldwide (Molteni et al. 1996; Toth and Kalnay 1993, 1997; Houtekamer and Derome 1995;34

Charron et al. 2010). Despite many improvements to them over the last ∼2 decades, precipitation35

forecasts from the ensembles are still typically unreliable, be it from insufficient model resolution,36

less-than-optimal initial conditions, sub-optimal treatment of model uncertainty, and/or sampling37

error. For this reason, statistical post-processing of the output of an ensemble prediction system38

is commonly an integral part of the forecast process, since it can improve the reliability and skill39

of probabilistic guidance (e.g. Wilks and Hamill 2007; Hamill et al. 2008, and references therein).40

By comparing past forecasts with their verifying observations, systematic biases and inadequate41

representation of forecast uncertainty can be identified, and the current forecast can be adjusted42

such as to minimize these systematic errors. When the forecasts are provided on a grid that is too43

coarse to resolve small-scale effects that affect the weather variable under consideration, many44

post-processing methods also implicitly perform a statistical downscaling.45

The statistical post-processing of precipitation accumulations is far more challenging than the46

post-processing of weather variables like surface temperature or wind speed for several reasons:47

1. Their mixed discrete/continuous nature (positive probability of being exactly zero, contin-48

uous value range for positive precipitation amounts) makes it difficult to find an adequate49

parametric distribution model.50

2. Forecast uncertainty typically increases with the magnitude of expected precipitation51

amounts; this must be taken into account when setting up a model for the conditional dis-52

tribution of observed precipitation amounts given the ensemble forecasts.53
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3. High precipitation amounts occur very infrequently; a customized treatment of these cases54

may therefore require a vast amount of training data.55

The advantages and disadvantages of the different post-processing approaches proposed in the lit-56

erature are typically related to those three challenges. Non-parametric approaches like the analog57

method (Hamill and Whitaker 2006; Hamill et al. 2015) completely avoid the first two issues,58

but may be disproportionately affected by the third one since their treatment of high precipitation59

amounts neglects the information with training samples with lower precipitation amounts. Para-60

metric methods, on the other hand, can extrapolate the relations found between observations and61

forecasts of low and moderate magnitudes to higher magnitudes. In doing so, they may reduce62

the demand for training data, but the quality of the corresponding predictions strongly depends63

on the adequacy of the parametric assumptions that have to be made. Examples of paramet-64

ric approaches that have been developed for quantitative precipitation forecasts include Bayesian65

Model Averaging (BMA, Sloughter et al. 2007), extended logistic regression (ExLR, Wilks 2009;66

Ben Bouallègue 2013; Messner and Mayr 2014), and ensemble model output statistics (EMOS,67

Scheuerer 2014). All of them make somewhat ad-hoc assumptions about the parametric form68

of the predictive distributions: Sloughter’s BMA method models precipitation occurrence/non-69

occurrence separately and assumes gamma distributions for positive precipitation amounts; ExLR70

implies the assumption of censored logistic distributions; Scheuerer’s EMOS method assumes71

censored generalized extreme value distributions. To deal with the issue of heteroscedasticity72

mentioned above, BMA and ExLR commonly apply power-transformations to both forecasts and73

observations, with powers chosen such as to make the forecast error terms more homoscedastic.74

Scheuerer’s EMOS method utilizes two different ensemble statistics that serve as as predictors for75

the scale parameter of the censored GEV distributions.76
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In this paper we will leverage NOAA’s second-generation GEFS reforecast data set (Hamill et al.77

2013) to systematically develop a parametric model for the conditional distribution of observed78

precipitation amounts given the ensemble forecasts. This will eventually lead to an approach sim-79

ilar to the one proposed by Scheuerer (2014), but based on censored, shifted gamma distributions80

(hereafter, CSGD), and a more sophisticated heteroscedastic regression model that accounts for81

some further peculiarities of precipitation. In Section 2 we briefly describe the forecast and obser-82

vation data used in this study, and we introduce our CSGD model in Section 3. Section 4 describes83

the actual post-processing approach, which proceeds in three steps: first, the ensemble forecasts84

are adjusted such as to match the observation climatology, and are condensed into three ensemble85

statistics. Second, a CSGD model for the unconditional (climatological) distribution of the obser-86

vations is fitted. Finally, a nonhomogeneous regression model is set up which links the ensemble87

statistics to the CSGD parameters, and results in a conditional distribution model for the obser-88

vations given the ensemble forecasts. This model is relatively complex, but a comparison with89

non-parametrically estimated conditional distributions of observed precipitation amounts shows90

that a certain degree of flexibility (and thus complexity) is necessary to address the peculiarities91

of precipitation. The benefit of developing a sophisticated parametric approach will become clear92

in Section 5, where probabilistic forecasts generated by our method are verified and compared93

against those obtained with a state-of-the-art analog approach. The latter is non-parametric, thus94

even more flexible than the CSGD approach, and easier to implement. In situations where training95

data is sparse (e.g. rare events), however, the predictive performance of the CSGD method is fa-96

vorable. Further experiments are presented that study how the different components of the CSGD97

contribute to the overall performance, and how reducing the amount of training data affects the98

quality of the fitted regression model. Section 6 provides a summary and points out challenges99

with parametric post-processing approaches that require further investigations.100
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2. Data101

The post-processing method developed here is applied to 12-hourly accumulated precipitation102

forecasts during the period from January 2002 to December 2013 for lead times up to +6 days. All103

of the forecast data were obtained from the second-generation GEFS reforecast data set; the same104

data was used in a recent paper by Hamill et al. (2015) which discusses variants of the analog105

method for statistical post-processing of ensemble precipitation forecasts. For precipitation, in-106

dividual forecasts by the 11-member GEFS reforecast ensemble were retrieved, and forecast data107

was extracted on GEFS’s native Gaussian grid at∼1/2-degree resolution in an area surrounding the108

contiguous U.S. Total-column ensemble-mean precipitable water is used as an additional predictor109

in our regression model, and the corresponding forecasts were interpolated to the same grid before110

further processing. Again as in Hamill et al. (2015), post-processing and verification is performed111

against precipitation analyses from the climatology-calibrated precipitation analysis (CCPA) data112

set of Hou et al. (2014), which were obtained on a ∼1/8-degree grid inside the contiguous U.S.113

The downscaling from the∼1/2-degree to the∼1/8-degree resolution will implicitly be part of the114

post-processing procedure.115

3. The censored, shifted gamma distribution116

To set up a parametric post-processing method, a suitable class of probability distributions must117

be identified. As precipitation occurrence/non-occurrence and amount are modeled jointly, a con-118

venient way to do so is using a continuous distribution that permits negative values, and left-119

censoring it at zero, i.e., replacing all negative values by zero. The censoring turns the probability120

for negative values of the uncensored distribution into a probability of observing a value equal to121

zero, thus ensuring requirement 1 described in Section 1.122
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Exploratory data analysis reveals another challenging requirement for conditional distributions123

of precipitation accumulations: when the predictor variable (e.g. the ensemble-mean precipitation124

forecast) is small, then a strongly right-skewed distribution is called for, but the required skewness125

becomes smaller and smaller as the predictor variable’s magnitude increases. To some extent,126

this behavior can be addressed by using gamma distributions, which are characterized by a shape127

parameter k and a scale parameter θ . Those two parameters are related to the mean µ and the128

standard deviation σ of the gamma distribution via129

k =
µ2

σ2 , θ =
σ2

µ
(1)

(Wilks 2011, Sec. 4.4.3). Since the predictive standard deviation increases more slowly than the130

predictive mean as the predictor variables increase, the shape parameter k decreases, and as k131

increases the skewness decreases.132

A disadvantage of the gamma distribution is that its value range is non-negative. To make the133

above censoring idea feasible, we therefore introduce an additional parameter δ > 0. This shifts134

the cumulative distribution function (CDF) of the gamma distribution somewhat to the left. That135

is, if Fk denotes the CDF of a gamma distribution with unit scale and shape parameter k, then the136

CDF F̃k,θ ,δ of our censored, shifted gamma distribution (CSGD) model is defined by137

F̃k,θ ,δ (y) =


Fk
(y−δ

θ

)
for y≥ 0

0 for y < 0

(2)

Using the relations in (1), this distribution can also be parametrized by µ,σ , and δ : µ reflects the138

expected magnitude of precipitation; σ parametrizes prediction uncertainty; δ reduces the magni-139

tude of precipitation somewhat and controls the probability of zero precipitation. An illustration140

of the CSGD is given in Fig. 1. Note that σ affects both the continuous part of the distribution141

and the point mass at zero, which we feel is consistent with its interpretation as an uncertainty142
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parameter: if the expected amount of precipitation is 1 mm, high forecast uncertainty implies that143

there is still a certain chance of observing much more precipitation, but also a significant chance144

of observing no precipitation at all. Increasing σ while keeping µ and δ fixed shifts more mass145

below the censoring threshold and thus accounts for both implications of inreased uncertainty.146

A two-stage approach which models precipitation occurrence and amount separately offers more147

flexibility, but does not have a single parameter that can be interpreted as uncertainty in this way.148

4. Post-processing method149

Having selected a family of probability distributions, we propose a procedure to link the three150

parameters of this distribution to the ensemble forecasts. This is done in three steps. First, quantile151

mapping is performed to adjust the ensemble precipitation forecasts such as to match the obser-152

vation climatology. The adjusted forecasts are then reduced to two statistics that measure mean153

and spread of predicted precipitation accumulations. A further statistic is calculated that mea-154

sures the mean precipitable water. In the second step, we fit a CSGD model as in eq. (2) to the155

observed daily climatology of 12-h precipitation accumulations at each grid point (separately for156

each month). This CSGD model is the basis for a heteroscedastic regression model that is set up157

in the third step, and links the ensemble statistics from step one to the CSGD parameters, thus158

defining a predictive distribution for the observed precipitation accumulations, given the ensemble159

forecasts. We now consider each step in more detail.160

a. Quantile mapping and ensemble statistics161

As a first step in our post-processing scheme, we attempt to correct systematic errors in ensemble162

forecast climatology. For example, the underlying numerical weather prediction may produce too163

many days with light precipitation and underforecast heavy precipitation events. Alternatively,164
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these errors can arise due to coarser spatial resolution of the forecast grid compared to the grid165

on which analyzed precipitation is available. This first step can therefore also be viewed as a166

preliminary downscaling procedure.167

Let s be a location associated with some analysis grid point. Prediction errors of the ensemble168

forecasts may result from inaccurately predicted magnitudes of a precipitation event as described169

above, but may also be caused by displacement errors. For example, a front or thunderstorm by170

have been predicted by the numerical weather prediction (NWP) model, but its position might be171

shifted away somewhat from its true position. The ensemble size of operational ensemble forecast172

systems is usually to small to represent this position uncertainty, and we therefore follow Scheuerer173

(2014) and consider ensemble forecasts at all forecast grid points within a certain neighborhood174

N(s) of s as potential predictors for the analyzed precipitation amount at s. Forecast fx j of en-175

semble member j at forecast grid point x is thus used multiple times to calculate ensemble- and176

spatial means and spreads for all analysis grid point neighborhoods N(s1),N(s2), . . . containing x.177

Each time, the forecasts within N(s) are adjusted such that their climatology matches the respec-178

tive observation climatology as illustrated in Fig. 2. This is achieved via quantile mapping: for179

each forecast fx j we determine to which quantile q f ,x(p), p ∈ [0,1] of the forecast climatology it180

corresponds, and then map it to the corresponding quantile qo,s(p) of the observation climatology.181

The quantiles are estimated from the training sample; for the GEFS ensemble considered here, all182

members are exchangeable, can thus be assumed to have the same forecast climatology, and can183

be pooled for the purpose of estimating the forecast quantiles. Estimating higher quantiles still184

comes with substantial sampling variability, and to make our quantile mapping procedure more185

robust, we therefore resort to a linear approximation of the mapping function for quantiles above186

the 90% quantile (details of this procedure are given in online appendix A).187
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To use the adjusted ensemble forecasts within a regression framework, they are next condensed188

into statistics that summarize the most important information. As discussed above, we propose189

that all forecast grid points in N(s) - which we take as a neighborhood around s with radius r -190

should be considered in determining these statistics, but we still expect forecasts at grid points191

closer to s to be more informative about the precipitation at s. Following Scheuerer (2014), we192

therefore weigh the forecast grid points according to their distance to s and let193

wsx ∼max

{
1−
(

dist(x,s)
r

)2

,0

}
with a constant of proportionality chosen such that the weights sum up to one (see left panel of194

Fig. 2 for an illustration of this weighting scheme). Assuming that we have an m-member ensemble195

with adjusted precipitation forecasts f̃x1, . . . , f̃xm and forecasts χx1, . . . ,χxm of precipitable water,196

we consider the following ensemble statistics:197

POP f ,s :=
1
m

m

∑
j=1

∑
x∈N(s)

wsx 1{ f̃x j>0} (3)

f s :=
1
m

m

∑
j=1

∑
x∈N(s)

wsx f̃x j (4)

χs :=
1
m

m

∑
k=1

∑
x∈N(s)

wsx χxk (5)

MD f ,s :=
1

m2

m

∑
j, j′=1

∑
x,x′∈N(s)

wsxwsx′ | f̃x j− f̃x′ j′| (6)

The first statistic describes the probability of precipitation derived from the (augmented and198

weighted) ensemble. The second and third are the weighted means of predicted adjusted pre-199

cipitation accumulations and precipitable water over all ensemble members and all forecast grid200

points in N(s). The third statistic measures the dispersion of the predicted precipitation accumula-201

tions both between ensemble members and between grid points in N(s). Unlike Scheuerer (2014),202

we do not use separate measures of dispersion for those two sources of variability in order to keep203

the number of parameters in our heteroscedastic regression model (defined below) as few as possi-204
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ble. We finally note that the adjustment of forecasts in N(s) to the observation climatology at s via205

quantile mapping achieves two goals: first, it produces an implicit downscaling to the precipitation206

at elements on a finer grid; second, it results in a homogenization of the forecasts within N(s), so207

that the aggregation of forecasts within a large neighborhood to ensemble statistics is reasonable208

also in, e.g. mountainous regions with substantially varying climatologies.209

b. Unconditional precipitation accumulations210

Although our main interest is in modeling the conditional distribution of observed precipitation211

accumulations given the ensemble forecasts, we first consider their unconditional (i.e. climato-212

logical) distributions. Studying those is much easier and yet quite instructive, as the conditional213

distributions should converge towards the unconditional distribution as forecast skill decreases.214

Moreover, they will allow us to parameterize the conditional distributions such as to make them215

more comparable across grid points with different climatologies. To fit the parametric CDF F̃µ,σ ,δ216

to the empirical CDF F̂n of the observations y1, . . . ,yn at this grid point, we minimize the integrated217

quadratic distance218

dIQ
(
F̃µ,σ ,δ , F̂

)
=
∫

∞

0

(
F̃µ,σ ,δ (t)− F̂n(t)

)2dt (7)

in µ,σ , and δ . According to Thorarinsdottir et al. (2013), this is equivalent to minimizing the219

mean continuous ranked probability score (CRPS)220

1
n

n

∑
i=1

crps
(
F̃µ,σ ,δ ,yi

)
(8)

where221

crps(F,y) =
∫

∞

−∞

(
F(t)−H(t− y)

)2dt, (9)
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and H(·) is the Heaviside step function, i.e. it is equal to 1 if t ≥ 0 and zero otherwise. After222

re-parameterizing, the integral on the right hand side can be expressed in closed form as223

crps
(
F̃k,θ ,δ ,y

)
= θ ỹ

(
2Fk(ỹ)−1

)
− θ c̃Fk(c̃)2

+ θk
(
1+2Fk(c̃)Fk+1(c̃)−Fk(c̃)2−2Fk+1(ỹ)

)
− θk

π
B
(1

2 ,k+
1
2

)(
1−F2k(2c̃)

)
where c̃ := −δ

θ
, ỹ := y−δ

θ
and B(·, ·) is the beta function (a derivation of this formula is given224

in online appendix B). The availability of a closed form expression makes model fitting through225

numerical CRPS minimization computationally efficient. When performing this minimization, the226

constraint δ ≥−µ is imposed in addition to the constraints µ,σ > 0 and δ ≤ 0 that are required for227

the distribution model to be well-defined. The reason for this will become more clear later in this228

section, when we set up the regression model for the conditional distribution of the observation229

given the forecasts.230

For solving the constrained optimization problems numerically, we use the Fortran 77 imple-231

mentation of the Linearly Constrained Optimization Algorithm (LINCOA) by Michael J. D. Pow-232

ell (details of this algorithm have not been published yet, but the usual way of choosing a new233

vector of variables is described in Powell 2014). A starting value for the optimization is obtained234

through the following rationale: if we had σ = µ , the underlying gamma distribution would have235

a shape parameter k = 1, which corresponds to the special case of an exponential distribution. For236

this distribution, the mean over all non-zero precipitation amounts is an estimate of µ (and σ ),237

for any probability of precipitation πpop, and δ can subsequently be estimated as δ = µ log(πpop).238

For the 12h-accumulations considered here, the best-fitting k is typically smaller than 1, with µ239

being overestimated by the assumption of an exponential distribution. Moreover, the first guess240

estimates proposed above might violate the constraint δ ≥ −µ . We therefore improve our first241
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guess by fixing σ , gradually decreasing µ , and recalculating δ = −(µ/k) ·F−1
k (1− πpop) until242

δ >−µ/2. The resulting values of µ,σ , and δ are then used as starting values for the numerical243

minimization of (8). If πpop < 0.02, we expect the number of days with non-zero precipitation244

to be too small to warrant stable estimates, and we therefore take the starting values as the final245

estimates. For extremely dry grid points with πpop < 0.005, even the simple preliminary esti-246

mates might be unreliable, and we use ad-hoc values µ = 0.0005,σ = 0.0182,δ = −0.00049 to247

set up a parametric distribution model for the analyzed climatology. This choice complies with248

the constraint δ ≥−µ and corresponds to a CSGD distribution with a probability of precipitation249

of slightly less than 0.005.250

Figs. 3 and 4 show examples of fitted CSGDs at a very wet location (West Palm Beach, FL) and251

a very dry location (Phoenix, AZ), respectively. The empirical and the fitted, parametric CDFs252

are virtually indistinguishable. The approximate character of the parametric distribution becomes253

more obvious when we plot its quantiles against the sorted observations. In those Q-Q plots we254

observe quite strong departures from the diagonal, especially in the upper tail. However, this is255

also where we expect significant sampling variability. In order to understand to what extent the de-256

partures might just be random, we add pointwise 95% Monte Carlo intervals by simulating 10000257

samples of the same size as the original observations according to the fitted distribution model,258

sorting them, and reporting the 2.5% and 97.5% quantile of the first elements, second elements,259

and so forth. The black dots in the Q-Q plots in Fig. 3 and 4 (and in all other examples that we260

studied) are mostly inside the 95% Monte Carlo intervals, suggesting that the distribution family261

proposed here is adequate for modeling unconditional distributions of precipitation accumulations.262
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c. Regression equations263

The final step is now to set up and fit a regression model for the conditional distribution of264

observed precipitation accumulations given the forecasts. To this end, the ensemble statistics for265

location s defined above must be linked to the parameters µs,σs, and δs of our CSGD model in266

eqs. (1) and (2). Denote by µcl,s,σcl,s and δcl,s the parameters of the climatological CSGD at s,267

and by f cl,s and χcl,s the climatological means of f s and χs, respectively, calculated as averages268

of these quantities over the current training sample. We fix δs = δcl,s and model the conditional269

CSGDs as deviations from the climatological CSGD via the following equations270

µs =
µcl,s

α1,s
· log1p

{
expm1(α1,s)

[
α2,s +α3,s POP f ,s +α4,s

f s

f cl,s
+α5,s

χs
χcl,s

]}
(10)

σs = α6,s ·σcl,s ·
(

µs

µcl,s

)α7,s

+α8,s ·MD f ,s (11)

where log1p(x) = log(1+x) and expm1(x) = exp(x)−1. The form of these regression equations,271

which depend on the fitted parameters α1,s, . . . ,α8,s, requires some explanation. Consider first a272

situation with very high predictability. In this case, we typically have 0 < α1,s� 1, which implies273

exp(α1,s) ≈ 1+α1,s and log(1+α1,sz) ≈ α1,sz, and thus eq. (10) reduces to a linear regression274

equation275

µs = µcl,s

[
α2,s +α3,s POP f ,s +α4,s

f s

f cl,s
+α5,s

χs
χcl,s

]
(12)

Some exploratory analysis (see also Fig. 6), however, suggests that a linear linear increase of µs276

with f s is not always appropriate. In situations with reduced predictability (e.g., longer lead times,277

warm season), ensemble forecasts of high precipitation amounts are particularly unreliable and278

should be decreased proportionately more compared to forecasts of intermediate levels. This is279

the rationale behind the logarithm in eq. (10). Increasing the parameter α1,s reduces the growth280

of µs with increasing predictors and thus accounts for the phenomenon just described. Eq. (11)281

accounts for the heteroscedasticity in the uncertainty about precipitation accumulations in two dif-282
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ferent ways. The first term increases σs proportionally to a power of µs, which accounts for the283

fact that forecast uncertainty increases with the magnitude of expected precipitation amounts. The284

second term is proportional to MD f ,s and thus accounts for flow-dependent uncertainty. Other285

parametric post-processing methods for precipitation (e.g. extended logistic regression) deal with286

heteroscedasticity by applying power-transformations to both forecasts and observations with the287

goal of making their relation more homoscedastic. This might be preferable when only small288

training datasets are available because it results in a potentially less complex model for σs. It289

entails, however, the disadvantage of strongly distorting the scale of these variables. Consider,290

for example, the two hypothetical five member ensembles (0.5,1,1.5,2,10) and (0,2.5,3.5,4,5)291

which have the same mean, but mean absolute differences of 4.0 and 2.3, respectively. The higher292

dispersion of the first ensemble results from one member predicting a substantially higher precip-293

itation amount than the other members which indicates a certain chance for heavier precipitation.294

If the mean absolute differences were calculated from cube root transformed forecasts, values of295

0.595 and 0.730 would be obtained, suggesting more uncertainty in the second ensemble. This296

does not adequately reflect the situation in the original ensembles, and could thus reduce the value297

of flow-dependent uncertainty information in the ensemble. Modeling heteroscedasticity explic-298

itly as in eq. (11) avoids the need for data transformations but entails a more complex regression299

model. Including µcl,s and σcl,s in the two regression equations does not change the actual model300

but is useful because it normalizes the regression parameters α1,s, . . . ,α8,s and makes them more301

comparable across grid points with different climatologies.302

Fig. 5 illustrates the evolution of the predictive CSGD density with increasing mean precipita-303

tion f s in a simplified setting where α3,s,α4,s and α8,s have been set to zero. It shows how the304

uncertainty increases with increasing f s; at the same time the skewness of the underlying gamma305
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distribution becomes smaller and smaller. Choosing α1,s = 0.05 results in a moderate departure306

from a linear relation between f s and µs.307

Is the CSGD adequate for modeling conditional distributions of precipitation accumulations,308

and are the above regression equations for its parameters µ and σ adequate for describing the evo-309

lution of these parameters with increasing ensemble mean? To answer this we compare quantiles310

derived from predictive CSGDs with empirical conditional quantiles obtained without any para-311

metric assumption. For this purpose, however, even the 12 years worth of reforecast data are not312

enough if only data from a single grid point are considered. We focus on the analysis grid point313

corresponding to the city of Atlanta, GA, and we increase the corresponding dataset by selecting314

200 additional analysis grid points within a radius of about 700 km around Atlanta that have a sim-315

ilar climatology and are at least 40 km apart from each other. For each season, we then have about316

91×12×201 pairs of observations and quantile adjusted forecasts. We study again the simplified317

regression model with α3,s = α4,s = α8,s = 0, i.e. with f s as the only predictor. The conditional318

quantiles of the observation given f s = x can then be approximated by considering all forecast-319

observation pairs for which f s falls within a certain window (x−ε,x+ε) around the precipitation320

amount x, and computing the quantiles of the corresponding observations. We let ε increase with321

x to account for the fact that the number of pairs with f s ≈ x decreases rapidly as x increases.322

For x =5 mm and x =15 mm our choice of ε is illustrated in Fig. 6. The crosses in each plot323

correspond to the empirical, conditional deciles (i.e. quantiles for the probabilities 0.1, · · · ,0.9)324

for each season and forecast lead times +12 to +24 h and +108 to +120 h. The solid lines are325

the quantiles obtained with our parametric regression model, fitted to the same training data. As326

for the unconditional CSGDs, the regression parameters are fitted by CRPS minimization using327

the LINCOA algorithm. Clearly, not every model-based quantile approximates the respective em-328

pirical quantile perfectly, and very irregular behavior cannot be captured. Yet one can see that the329
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the non-linear relation between f s and µs, which takes different forms depending on season and330

lead time, is accounted for by the logarithm in eqn. (10), allowing the red median curves to bend331

downward from a linear curve as f s increases. Moreover, the increase of predictive uncertainty332

(distances between the blue decile curves) with increasing f s is captured quite well by the model333

for σs given in eqn. (11). It is worth noting that our method for getting empirical estimates of con-334

ditional quantiles is quite similar to what is being done by analog approaches. Those techniques335

are much more flexible and avoid the approximation errors entailed by parametric methods. On336

the other hand, several of the plots in Fig. 6 also suggest that the empirical quantiles for large337

values of f s are subject to quite substantial sampling error, even in the situation considered here338

where we choose the “analogs” from a training data set of size 91×12×201.339

Finally, consider how the regression model (10), (11) for the predictive CSGDs approaches the340

parameters for the climatological CSGD in the limit where the raw ensemble forecasts have no341

skill. As the lead time increases, one can expect that the four predictors POP f ,s, f s,χs and MD f ,s342

become less and less informative about the true weather, and so the corresponding regression343

parameters α3,s,α4,s, α5,s, and α8,s tend to zero. If at the same time α2,s and α6,s tend to one, then344

µs and σs tend to the climatological CSGD parameters µcl,s and σcl,s, whatever the values of α1,s345

and α7,s, and so the climatological CSGD results as a limiting case. Including µcl,s and σcl,s in346

the regression equations (10), (11) can therefore be seen as a kind of normalization which helps347

reduce the dependence of the regression parameters α1,s, . . . ,α8,s on the climatology at location s348

and thus renders them more comparable across different gridpoints.349

Modeling the conditional distributions as deviations from the climatological distributions re-350

quires some constraints of the latter. We found that this deviation concept does not work well at351

very dry locations if the shift parameter δcl,s of the climatological CSGD is large compared to352

µcl,s. In this case, positive precipitation accumulations correspond to the tail end of the under-353
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lying gamma distribution, and deforming this distribution into a CSGD with a moderate to high354

probability of precipitation is rather unnatural. By introducing the constraint δcl,s ≥−µcl,s on the355

climatology parameters in subsection b), we enforce a very small shape parameter k. The mass356

of the underlying gamma distribution is then concentrated near zero, and a very small shift is suf-357

ficient to obtain a high probability of values less than zero. Fitting a climatological CDF to the358

observation data under this constraint can result in a slightly sub-optimal fit to the empirical, cli-359

matological CDF near zero, but this degradation is offset by the fact that the fitted CSGD permits360

a natural deformation into the predictive CSGD for any value of the predictors.361

5. Validation of the CSGD method362

We apply our CSGD regression method to the full data set described in Section 2. Now, every363

grid point of the CCPA grid (within the CONUS) is processed separately. Forecasts are cross-364

validated; for example, 2002 forecasts are trained using 2003-2013 data. In order to account for365

seasonal differences, a separate set of (both climatological and regression) parameters is fitted for366

each month; training data is composed of all forecasts and observations from ±45 days around367

the 15th of the month under consideration and all years except the one for which forecasts are368

sought. This results in a training sample size of 91×11 at each grid point. Compared to the369

amount of training data that is typically used for weather variables like wind speed or temperature,370

this training sample size seems fairly large. At very dry locations, however, the majority of both371

forecasts and observations are zero, and thus carry only limited information that can be leveraged372

for model fitting. For the parameters of the unconditional CSGDs we already described our special373

treatment of these dry cases in Section 4b. For the regression parameters, we increase the training374

data set of any grid point where the climatological probability of precipitation is less than 0.05 by375

considering also the data at adjacent grid points in east-west and north-south direction. For grid376
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points with a climatological probability of precipitation of less than 0.02, we additionally add the377

training data from diagonal neighbors. Parameters are estimated via CRPS minimization, subject378

to the following bounds:379

0.001≤ α1,s,α2,s ≤ 1 , 0≤ α3,s,α4,s,α5,s ≤ 1.5,

0.1≤ α6,s,α7,s ≤ 1 , 0≤ α8,s ≤ 1.5,

which are partly ad hoc and partly based on the discussion at the end of the previous section.380

In our experiments, CRPS minimization gave slightly better results than classical maximum381

likelihood estimation, which is nonrobust and tends to favor over-dispersive predictive CSGDs.382

The same conclusion was reached by Gneiting et al. (2005) in the context of temperature post-383

postprocessing. Initially, we fix the radius of the neighborhood within which forecasts are consid-384

ered as predictors (see Section 4a) to r = 2 degrees (≈ 200 km).385

a. Overall performance and model complexity386

First, we take a look at the overall predictive performance of our CSGD method, measured by the387

continuous ranked probability skill score (CRPSS), which quantifies the improvement of the CRPS388

of the predictive CSGDs over climatological forecasts. We also study in how far the different389

nonlinear and heteroscedastic components of our model contribute to this overall performance. To390

this end we consider five submodels of the full regression model (10), (11):391

1. basic linear model (12) for µs with the ensemble mean as the only predictor (i.e. α1,s = α3,s =392

α5,s = 0); increase of σs proportional to
√

µs and no use of MD f ,s (i.e. α7,s = 0.5,α8,s = 0).393

2. as the previous model but with the nonlinear model (10) for µs instead of (12).394

3. as the previous model but releasing the ad-hoc assumption α7,s = 0.5 about the rate of increase395

of σs with increasing µs.396
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4. as the previous model but with added predictor MD f ,s for σs.397

5. as the previous model but with added predictor χs (precipitable water) for µs.398

The basic model has only three parameters and is comparable (in terms of model complexity) with399

the (basic) extended logistic regression model (Wilks 2009). Direct comparisons of the parametric400

post-processing approaches mentioned in Section 1 (ExLR, BMA, EMOS) suggest that their pre-401

dictive performance is quite similar (Schmeits and Kok 2010; Scheuerer 2014), so how much extra402

skill can be gained by adding additional predictors or permitting certain forms of nonlinearity?403

Fig. 7 depicts the overall CRPSS (for the full model) for different lead times and the CRPSS404

increase that results from adding step-by step the extra components described above. The first405

thing to note is the pronounced seasonal cycle of the CRPSS. Summertime convection is more406

difficult to forecast than synoptic-scale winter precipitation, and so forecast skill during the cool407

season is substantially higher than during the warm season. This pattern is inherited from the raw408

ensemble predictions, the corresponding results can be found in Hamill et al. (2015). The increase409

in skill due to the different refinements of the basic model is rather moderate for each individual410

extension, but sums up to a cumulative increase of about 0.01 to 0.015. The biggest benefit results411

from allowing a nonlinear increase of µs with f s, especially for longer lead times (see right panel412

of Fig. 7). The predictor POP f ,s yields a rather constant improvement in skill over all months of413

the year, while the predictor χs (precipitable water) becomes especially useful in the warm sea-414

son but adds no information to the ensemble precipitation forecasts during the more predictable415

cool season. The converse is true for the MD f ,s predictor which measures the spread of the fore-416

casts between different ensemble members and forecast grid points within N(s): it provides useful417

information about flow-dependent forecast uncertainty during the cool season, but does not im-418

prove (or even degrades, for longer lead times) probabilistic forecast skill during the warm season.419
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The degradation is presumably a result of overfitting, to which the MD f ,s predictor is particularly420

prone, and which becomes a more serious concern as the signal to noise ratio in the training dataset421

decreases. Finally, we note that estimating the rate of increase of σs with increasing µs rather than422

fixing α7,s = 0.5 adds some flexibility, but the resulting benefit on predictive performance is quite423

marginal.424

Fig. 8 depicts maps of CRPSS values of the CSGD predictions to provide an impression about425

regional differences. Forecast skill is largest along the east and especially the west coast of the426

CONUS, which we believe is due to the relatively high predictability of orographically induced,427

synoptically forced precipitation. The general spatial pattern of forecast skill resembles that of the428

raw ensemble (see Hamill et al. 2015) while the skill is significantly better.429

b. CSGD vs. analog method: Brier skill scores and reliability430

The CRPS studied so far is a useful and common measure of the overall skill, but it does not431

allow any conclusion about how skillful the CSGD forecasts are for predicting light, intermediate,432

and heavy precipitation events. To answer this question, we study Brier skill scores (Wilks 2011,433

eqs. 7.34 and 7.35) for the three thresholds of 1, 10, and 25 mm 12 h−1. We further compare the434

predictive performance of the CSGD approach to a recently proposed variant of the rank analog435

approach by Hamill and Whitaker (2006), where supplemental location are used to augment the436

training dataset at each analysis grid point. This adjustment to the rank analog procedure was437

shown to substantially improve probabilistic forecasts for heavy precipitation events (Hamill et al.438

2015). Can the same or even more improvement be achieved by a parametric post-processing439

scheme? Fig. 9 depicts the monthly Brier skill scores (BSSs) for both methods, the three different440

thresholds, and forecast lead times up to +6 days. Even for the >1 mm 12 h−1 event, the CSGD441

method can still improve upon the analog method, despite the fact that this is a rather common442
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event at most grid points, and we should expect that sufficiently close analogs can usually be443

found. The fact that the CSGD method can compete with the analog approach in this situation444

suggests that our parametric approximation does not degrade predictive performance even when445

analog methods can be expected to perform very well. Comparing results for higher thresholds,446

we find that the probabilistic CSGD forecasts are again able to improve upon the forecasts by the447

analog method. The event >25 mm 12 h−1 is relatively rare, making it difficult to find a sufficient448

number of suitable analogs, even if supplemental locations are added to increase the training data449

sets. Our parametric method, on the contrary, can extrapolate relations found for more common450

situations and thus yield superior predictions of rare events.451

To provide some understanding about the causes of the better performance of our parametric452

method compared to the non-parametric analog approach, we consider reliability diagrams for453

the same events as above (thresholds 1, 10, and 25 mm 12 h−1) and lead times +12 to +24 h454

and +108 to +120 h. The plots in Figs. 10 and 11 suggest that both methods yield reliable455

probabilistic forecasts at short lead times. At longer lead times, they are still sufficiently accurate,456

though somewhat less reliable. By comparing the inset frequency histograms, one can see that457

the performance gain of our CSGD method is mainly due to increased resolution; it issues high458

probabilities for observing heavy precipitation more frequently without degrading the reliability459

compared to the analog approach, which does not rely on parametric assumptions.460

We illustrate the last point by considering a heavy precipitation event that took place over Wash-461

ington state between 1200 UTC on November 6 and 0000 UTC on November 7 in 2006. Fig. 12462

shows the analyzed precipitation accumulations for that period, as well as +12 to +24 h lead463

predicted probabilities for exceeding 25 mm 12h−1 of precipitation by the raw ensemble, the ana-464

log approach and the CSGD regression method. The raw ensemble forecasts for that day were465

quite accurate, but since this is not always the case, one can expect that calibrated probabilistic466
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forecasts modulate the high forecast probabilities. The analog approach modulates them more467

strongly, issuing rather moderate probabilities. On the other hand, the CSGD method largely re-468

tains the strong signal from the raw ensemble, and hence provides decision makers with a more469

unequivocal expectation of heavy precipitation.470

c. Performance with a greatly reduced training data set471

The results by Hamill et al. (2015) underscore the importance of a sufficiently large training472

data set for statistical post-processing, especially when the interest is in heavy precipitation events.473

What if a large reforecast dataset is not available? Can the CSGD approach retain its strong perfor-474

mance, or will it lose a large amount of skill as a result of over-fitted regression parameters? Can475

possible over-fitting be avoided by supplementing the training dataset at each grid point with train-476

ing data from other grid points? To answer these questions we repeat the entire procedure (quantile477

mapping, calculating ensemble statistics, fitting the regression model) described above, this time478

using, for each of the 12 verification years, only forecast data from the preceding year or from the479

preceding three years (defining 2013 to be the year that precedes 2002) for training. We are thus480

left with only 91 and 273 training days, respectively, for quantile mapping and model fitting. Using481

just a single year of training data mimics the situation where no reforecasts are produced, but one482

year of training data is available from a pre-operational test phase after a major update of the NWP483

system. Such update would only have a limited or no effect on the verification/calibration data,484

and we therefore use the same CCPA data sets as before (11 training years for each verification485

year) for calculating the CCPA quantiles (Section 4a) and fitting the unconditional CSGD model486

(Section 4b).487

Since fixing α7,s = 0.5 hardly affected the predictive performance with the large training dataset488

used above, and since the uncertainty parameter α8,s is particularly prone to overfitting, we fit489
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reduced CSGD regression models with α7,s = 0.5 and α8,s = 0 in the present setup. Even the490

estimation of the remaining six parameters might be difficult with only 91 or 273 training days491

(the majority of which are typically dry days). We therefore consider a further setup where we use492

again just one year / three years of training data (forecasts) but supplement the dataset at each anal-493

ysis grid point with data from 19 other analysis gridpoints with similar climatologies and terrain494

characteristics, and a certain minimal distance to each other to make sure that their forecast error495

characteristic are largely independent. For a detailed description of the algorithm for selecting the496

supplemental locations see Hamill et al. (2015, online appendix A), where supplemental locations497

are used quite successfully to improve the predictive performance of the analog method for higher498

precipitation events. In their setup, the supplemental data complement the reforecast data; here,499

we study in how far data from other locations can substitute reforecast data.500

For the calculation of the forecast quantiles as required for the quantile mapping step, there is501

no straightforward way to pool data across different grid locations. In this context we must hope502

that there is sufficient independent information in the ensemble (recall that all ensemble member503

forecasts are pooled for the purpose of calculating the forecast quantiles) to warrant an adequate504

estimation of the forecast climatology.505

Fig. 13 depicts the decrease of the Brier skill scores obtained with the setups described above506

compared to the full model fitted with 11 years of training data. The effects of reducing the507

training sample size are dramatic, especially for the prediction of the 25 mm 12h−1 event. Brier508

skill scores for +12 to +24 h lead time go down by up to 0.1 when only one year of training data509

is used. Inspection of the corresponding reliability diagrams (see online appendix C) reveals that510

the reliability of CSGD forecasts suffers substantially. As a result of overfitting, the predictive511

CSGDs become overconfident (underdispersive), and this overconfidence particularly affects the512

higher thresholds. The use of supplemental locations can mitigate but not entirely compensate513

24



the lack of reforecast data; although the training dataset corresponding to the ’one year reforecast514

plus supplemental locations’ setup is almost twice as large as the training dataset with 11 years of515

reforecasts (but no supplemental data), the resulting CSGD predictions are still inferior. However,516

they nearly match at least the performance of the CSGD model fitted to a training dataset consisting517

of three years of reforecasts but no supplemental data. On the one hand this highlights the benefits518

that a lengthy reforecast can provide, with its greater variety of weather events covered. On the519

other hand it shows that the strategy of increasing the training dataset by considering supplemental520

locations can substantially reduce the performance loss due overfitting.521

d. Role of the neighborhood size considered for the ensemble statistics522

So far, all results for the CSGD method were obtained with a radius r = 2 degrees around each523

analysis grid point, within which forecasts were used as predictors. This is an ad-hoc choice,524

and the question suggests itself as to how much of an impact the choice of the neighborhood size525

has on the predictive performance, and what the optimal radius would be for each lead time. To526

study this, we use again the maximal training dataset (11 years of forecasts and analyses), the full527

regression model (10), (11), and calculate the CRPSS of the predictive CSGDs for different choices528

of r. The smallest possible radius r = 0.5 degrees (the resolution of the forecast grid) serves as529

a benchmark and corresponds to neighborhoods that only contain the closest forecast grid points.530

Extremely large neighborhoods were not tested due to the increased computational expense. In531

Fig. 14 we depict the change in CRPSS relative to this benchmark value for larger neighborhood532

sizes. As might be expected, the optimal radius changes with lead time: for the longest (day533

4.5 to 5) lead time considered here, the largest radius r = 3 yields the best results, while for534

the shortest (day 0.5 to 1) lead time an initial increase in predictive performance is eventually535

reversed when r is increased beyond 2 degrees. This case further shows that it is not just lead536

25



time, but more generally predictability that determines the optimal radius: the more predictable537

precipitation generating processes during the cool season favor smaller neighborhood sizes than538

the less predictable processes during the warm season. The overall increase of skill resulting from539

an adequate choice of r (larger than the minimal choice of r = 0.5 degrees) is similar or even larger540

in magnitude than the increase resulting from more sophisticated regression equations as studied541

in Section 5a.542

6. Discussion543

We have discussed a parametric post-processing approach that uses statistics of the raw ensem-544

ble forecasts as predictors for the parameters of a censored, shifted Gamma distribution (CSGD).545

Exploratory analysis (see Fig. 3, 4, and 6) showed that CSGDs can approximate both climatologi-546

cal distributions of observed precipitation, and distributions conditional on the ensemble forecasts547

reasonably well. Ensemble mean and dispersion predictors were estimated from the ensemble at548

the observation location and in a surrounding area. Ensemble mean precipitable water was used as549

a further predictor. These statistics were used to drive a heteroscedastic regression model, which550

was demonstrated to be capable of modeling the relation between ensemble forecasts and param-551

eters of the predictive CSGDs. Verification results showed that the CSGD regression approach552

yields probabilistic forecast that were sufficiently reliable at all lead times and had better resolu-553

tion than the forecasts obtained by a state-of-the-art analog approach. This was especially true for554

forecasts of extreme events, which are of particular interest due to their socio-economic impact.555

The CSGD approach presented here adopted the Scheuerer (2014) procedure of utilizing fore-556

casts within a larger neighborhood of the location of interest as predictors. Accordingly, we also557

studied the connection between the optimal neighborhood size and predictive skill, finding that558

very large neighborhoods with a radius of over 300 km performed best with longer lead times and559
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for predictions during the warm season. For short lead times and synoptic-scale winter precipita-560

tion, a smaller radius was more appropriate. The improvement in skill with larger neighborhoods561

compared to a model that only used forecasts at the nearest forecast grid points was similar in mag-562

nitude as the improvement due to more complex and flexible regression equations that permitted a563

nonlinear relation between the predictors and the predictive mean.564

Finally, we studied the effect of training sample size on the predictive performance of the fitted565

CSGD model. For the analog method, a large training data set is preferred because only then can566

good analogs always be found over all cases. The results presented here suggest that the predictive567

performance of a parametric approach also suffers substantially if the model is fitted with an568

insufficiently large data set. Supplemental data from close-by grid points can partly compensate569

for a lack of reforecasts, but more efficient ways to share information between different locations570

need to be found to ensure good predictive skill of forecast of more extreme events even with a571

limited amount of reforecasts. These results affirm the positive value of lengthy training data sets572

that reforecasts can provide.573
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FIG. 1. Examples of censored, shifted gamma distributions. The fractions of the probability density function

that fall below zero (shown in the grey shading) translate into a positive probability of being exactly zero.
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FIG. 2. Illustration of the neighborhood weighting scheme and the climatology adjustment for an analysis

grid point (’+’) near Sacramento, CA, and r = 2 deg. Forecast grid points are denoted by ’•’, their area is

proportional to the weight wsx. The middle and right-hand panel illustrate, for two of these forecast grid points,

how the corresponding forecasts are adjusted by quantile mapping.
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FIG. 3. Empirical and fitted CDFs (top) and Q-Q plots (bottom) of +12 to +24 h analyzed precipitation

accumulations in West Palm Beach, FL. The black dots in the lower panels are the sorted observations, plotted

against the corresponding theoretical quantiles from the fitted CSGD model. Ideally, they would lie on the

diagonal (solid red line); due to sampling variability, however, any black dot lying within the pointwise 95%

Monte Carlo intervals (solid blue lines) can still be considered consistent with the fitted model.
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FIG. 4. Same as Fig. 3, but for Phoenix, AZ.
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FIG. 5. Example of predictive CSGD densities, showing the evolution of the CSGD parameters µ and σ from

eqs. (1) and (2) as a function of the ensemble-mean statistic f s.
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FIG. 6. Conditional deciles (median is highlighted in red) obtained with the augmented Atlanta data set.

Empirical deciles are depicted as crosses. For each conditioning value 1 mm, 2 mm, ..., 25 mm they are obtained

as empirical deciles of the observations corresponding to ensemble-mean statistics within a certain bin (for 5 mm

and 15 mm depicted as vertical dashed lines) around this value. Deciles derived from the CSGD regression model

are depicted as solid lines.
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FIG. 7. CRP skill scores (left panel) for different lead times, separately for each month, but aggregated over

all analysis grid points within the CONUS. Increases of CRPSSs due to increased model complexity are shown

for for +12 to +24 h lead time (middle panel) and +108 to +120 h lead time (right panel).
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FIG. 8. Map of CRPSS values, aggregated over all months and all cross-validated years, for +12 to +24 h

lead time (left panel) and +108 to +120 h lead time (left panel).
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FIG. 9. Brier skill scores for different lead times and different event thresholds, separately for each month,

but aggregated over all analysis grid points within the CONUS. Results for the rank-analog method are shown

in the top row, those for the CSGD regression approach are shown in the bottom row.
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FIG. 10. Reliability diagrams for +12 to +24 h lead time and different event thresholds, calculated with

forecast-observation pairs of all months, all cross-validated years, and all analysis grid points within the CONUS.

The top row shows results for the rank-analog method, the bottom row shows results for the CSGD regression

approach. The inset histograms depict the frequency with which each category was predicted.
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FIG. 11. As Fig. 10 but for +108 to +120 h lead time.
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(a) 12-h accum. precipitation analysis
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FIG. 12. Analyzed precipitation between 1200 UTC, Nov 6, 2006 and 0000 UTC Nov 7, 2006 (a) and

corresponding +12 to +24 h lead probability forecasts for exceeding 25 mm 12 h−1 of precipitation by the raw

ensemble (b), the analog method (c) and the CSGD regression approach (d).
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FIG. 13. Decrease of the Brier skill scores (aggregated over all analysis grid points within the CONUS) due

to a reduction of the training sample to one or three years of training data. In both cases we also give results for

CSGD distributions fitted with additional training data from 19 supplemental locations.
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FIG. 14. Increase of CRP skill scores for different neighborhood sizes, relative to the smallest possible

neighborhood with r = 0.5 degrees.

709

710

45


